Introduction to Computational Chemistry

Computational (chemistry education) and/or (Computational chemistry) education

- First one: Use computational tools to help increase student understanding of material already covered in various courses
- Second one: Teach students about computational chemistry (molecular modeling) itself, in both courses and research projects

Outline

- Why Molecular Modeling?
 - Definitions; New way of doing chemistry
- Molecular Modeling Methods
 1. Molecular Mechanics
 2. Hartree-Fock and post-HF
 3. Semiempirical
 4. Density Functional Theory
- Method Comparisons
 - Accuracy
 - Expense
- Units, Lab Exercise overview
Why Computational Chemistry??

- In 1929, P.A.M. Dirac wrote:
 - “The underlying physical laws necessary for the mathematical theory of... the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.”
 - Dirac didn’t have access to digital computers, but we do!

Molecular Modeling Defined

- Provides information that is complementary to experimental data on the structures, properties, and reactions of substances
- Largely based on a few algorithms: Schrödinger and Kohn-Sham Equations
- Used to require the use of high performance computers (architecture)
- Modern desktop machines now do what supercomputers did ten years ago
- **Everyone** now has access to this tool!!

Chemistry Today: A Different View

<table>
<thead>
<tr>
<th>Old Way</th>
<th>New Way</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired Properties</td>
<td>Measure, Synthesize, Build</td>
</tr>
<tr>
<td>Structural Design</td>
<td>Interpret, Correlate</td>
</tr>
</tbody>
</table>

[Diagram showing the connections between Desired Properties, Structural Design, and Compounds with Measure, Synthesize, and Build.]
1. Molecular Mechanics

- Apply classical mechanics to molecules
 → No electrons, no orbital interactions!!
 - Atoms are spheres with element dependent mass
 - Bonds are springs that obey Hooke’s Law:
 \[F = -kx \]
 where \(k \) is the force constant (for a specified bond type between certain atoms)
 - Other types of springs represent bond angles, dihedral angles, etc.

Molecular Mechanics: Some Components

- Bond stretching (l)
- Bond Angle bending (\(\theta \))
- Dihedral Angle rotation (\(\Phi \))
- Van der Waals forces
- Hydrogen bonding
- Electrostatic interactions
- Cross terms (stretch-bend, etc.)

Molecular Mechanics: Mathematics

- Bond stretching (MM2):
 \[V_r = \frac{1}{2} k_r (l - l)^2 [1 - B(l - l)^2] \]
- Angle bending:
 \[V_\theta = \frac{1}{2} k_\theta (\theta - \theta_0)^2 [1 + C(\theta - \theta_0)^2] \]
- Dihedral angle rotation (torsion):
 \[V_\phi = \frac{1}{2} (1 + \cos \phi) + \frac{1}{2} (1 + \cos 2\phi) + \frac{1}{4} (1 + \cos 3\phi) \]
- Van der Waals:
 \[V_{vdW} = A e^{-\frac{r}{\rho}} - \frac{C_6}{r^6} \]
Molecular Mechanics: Overall Energy

- Also called “steric” energy
 - Summation of all the terms:
 \[V_{\text{steric}} = V_{\text{stretch}} + V_{\text{bend}} + V_{\text{torsion}} + V_{\text{vdW}} + \ldots \]

- Collection of functional forms and associated constants is called a force field

- BEWARE: “Energies” reported by MM are meaningless (not externally referenced)
 - These values may be useful when comparing conformers of the same molecule

Parameters

- ~100 elements: \(N(N+1)/2 = 5050 \) single bonds
- Multiple bonds: Define atom hybridizations
 - ~300 atom types: \(\rightarrow 45,150 k \) values!
 - Also need \(l_0, \theta, k', k'' \) (torsions), and numerous other values for other terms
 - To be thorough, would need \(\sim 10^8 \) parameters gathered from experimental data, or from higher level theories!
- Force fields for particular types of molecules
 - MM2, MM3 (organics); Amber, CHARMM (biomolecules); others for inorganics, etc.

Molecular Mechanics

- **Advantages:** Very fast, excellent structural results (if compound matches parameter set), works for large molecules
 - Used to produce a starting geometry
 - Geometry optimization: Move all atoms until sum of all forces on each = 0

- **Disadvantages:** Many compounds do not have good parameters available
 - No orbital information
 - Can’t study reactions, transition states, etc.
Quantum Mechanics

- Electronic structure based on: \(\hat{H} \Psi = E \Psi \)
 \(\hat{H} \) is known exactly
 \(\Psi \) is unknown, except for some simple systems
 - Hydrogen, and hydrogen-like atoms
 - Particle in a box, etc.

\[
\hat{H} = -\frac{\hbar^2}{2m_e} \nabla_i^2 - \frac{\hbar^2}{2m_i} \nabla_k^2 - \sum_i \sum_k \frac{e^2 Z_k}{r_{ik}} + \sum_{i<j} \frac{e^2}{r_{ij}} + \sum_{i<k} \frac{e^2 Z_i Z_k}{r_{ik}}
\]

→ Want to get \(\Psi \), but have to make approximations

Approximations Used

1. Born-Oppenheimer: Compared to electrons, nuclei are stationary
 - Electrons move in field of fixed nuclei
2. Hartree-Fock: Separate \(\Psi \) (many electron wavefunction) into series of one electron spin orbitals
3. LCAO (Linear Combination of Atomic Orbitals): MO’s expressed as linear combinations of single electron atomic orbitals, represented by basis functions

Ab Initio Methods

- Use complete \(\hat{H} \) and estimated \(\Psi \) (symbol \(\phi \))
- Molecular orbital construction (LCAO):

\[
\phi = \sum_{i=1}^{N} a_i \phi_i
\]

Basis set = set of \(N \) functions (GTO’s) \(\phi_i \), each associated with a molecular orbital expansion coefficient \(a_i \)

- Variational Principle: \(E_{\phi} \geq E_{\phi} = E_{\text{experimental}} \)
 - Process: Iteratively adjust \(a_i \) values until lowest energy (ground state) is found
 → “Self-Consistent Field” approach
Optimization Procedure

• Overview:
 - Input Initial Geometry
 - Calculate Integrals
 - Calculate Initial E
 - Solve SCF Equations
 - Calculate Gradients and Hessian
 - Analysis of Minimum
 - Results
 - Variation of Geometry
 - Calculate Integrals

Iteration

Goal

→ Mathematical representation of chemical reality
 - Basis set should approximate actual wave function sufficiently well to give chemically meaningful results
 - Using more complex basis sets improves results at the cost of added computational expense

• Question: Quantitative or qualitative results?
 - Always a trade-off between accuracy and computational cost

Chemical Decides: Computational Chemistry Map

<table>
<thead>
<tr>
<th>Chemist Decides:</th>
<th>Computer calculates:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Molecular Geometry</td>
<td>AOs determine the wavefunction (ψ)</td>
</tr>
<tr>
<td>Basis Set (with ab initio and DFT)</td>
<td>LCAO</td>
</tr>
<tr>
<td>Type of Calculation (Method and Assumptions)</td>
<td>MOs</td>
</tr>
<tr>
<td>Properties to be Calculated</td>
<td></td>
</tr>
</tbody>
</table>

AOs
2. Hartree-Fock Method

- \(\phi \) given by Slater determinant
 - Each electron moves in an average electric field produced by all the other electrons
 - No instantaneous e-/e- repulsion is included
- Result:
 - e-/e- repulsion is overestimated
 - Energy results are generally not accurate
 - \(\phi \) produced is often "close enough" that some useful information can be obtained
 - DFT methods are now much more popular
 - Method serves as a starting point for more advanced theories

Post HF Methods

- Deals more explicitly with e-/e- interactions
 - **Configuration Interaction (CI):**
 - Improve the wave function by adding in contributions from unoccupied orbitals
 - Extreme computational cost
 - **Møller-Plesset Perturbation Theory:**
 - Simplify \(\hat{H} \) so exact wavefunctions and energies are found, then use these values to estimate the wave function and energies for the complete \(\hat{H} \)
 - Computational cost increases rapidly

Problems with HF Approach

- Calculated energies are not good
- Iterative solution process is time consuming
- \(N^4 \) total integrals need to be evaluated
 \((N = \text{number of basis functions used}) \)

Overcoming HF Problems:

1. **Semiempirical** approach: Ignore part of \(\hat{H} \)
 - Replace some integrals with parameters so that calculations better match experimental results
2. **Density Functional Theory** approach
 - Get rid of troublesome wave function altogether
 - Use electron density instead
3. Semiempirical Methods

- Simplifications:
 1. Only look at valence electrons
 - Core electrons subsumed into nucleus
 2. Neglect certain integrals (distance cut-off)
 3. Parameterize other integrals using experimental results
 - Different semiempirical methods are parameterized to reproduce different properties
 4. Use a minimal basis set (3-21G)
 5. Employ a non-iterative solution process

Semiempirical Methods: AM1, PM3, RM1

- Differ in how e⁻/e⁻ repulsion is handled

- Advantages:
 - Fast → Can handle fairly large molecules
 - Good qualitative, some ~ quantitative results
 - Parameters available for solution phase

- Disadvantages:
 - Parameters not available for all atoms
 - Molecule/parameterization set similarity
 - Only properties that are parameterized for
 - Limited to ground state equilibrium geometries

4. Density Functional Theory

- A type of ab initio method, but may include some parameterization
 - Hohenberg and Kohn (1964)

 "The ground state energy \(E \) of an \(N \)-electron system is a functional of the electronic density \(\rho \), and \(E \) is a minimum when evaluated with the exact ground state density"

 - A function whose argument is also a function is called a functional
 - A functional enables a function to be mapped to a number
DFT Process

- The energy is minimized with respect to variations in ρ, subject to the constraint of charge conservation:

$$N = \int \rho(r) dr$$

- HF-SCF Theory is $4N$ dimensional
- Electron density is $3N$ dimensional ($N = \# \text{ of e}^{-})$
 - Get rid of one dimension (spin)
- Easier to deal with electron density than with wave functions
- DFT is also an iterative process, as was HF

Differences Between HF and DFT

- DFT contains no approximations. It is exact.
 - All we need to know is the exchange-correlation energy, E_{xc}, as a function of ρ
 - We must approximate E_{xc}
- HF is a deliberately approximate theory so that we can solve the equations exactly
- So, with DFT our theory is exact and the equations are solved approximately, while with HF the theory is approximate so we can solve the equations exactly

DFT

- Some common functionals:
 - B3LYP, B3PW91, VWN#5, B88LYP, etc.
 - Differ in the way E_{xc} is approximated

 → With few exceptions, DFT is the most cost-effective method to achieve a given level of quantitative accuracy
 - Electron correlation included with less expense
 - Basis functions are still used to adjust the electron density
Brief Comparison of Methods

Things to consider:

<table>
<thead>
<tr>
<th></th>
<th>MM</th>
<th>HF</th>
<th>Semi-Emp.</th>
<th>DFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Fast, large molecules</td>
<td>Results can be quantitative</td>
<td>Good qual. and ~quantitative results</td>
<td>Better accuracy than HF</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Parameters may not be available</td>
<td>e correlation limits accuracy</td>
<td>Parameters may not be available</td>
<td>Limited to smaller systems</td>
</tr>
<tr>
<td>Expense</td>
<td>Least expensive technique</td>
<td>Expense is quite high</td>
<td>Inexpensive technique</td>
<td>Expense is high</td>
</tr>
</tbody>
</table>

Accuracy

<table>
<thead>
<tr>
<th>Method</th>
<th>ΔH kcal mol$^{-1}$</th>
<th>Bond length (Å)</th>
<th>Bond angle (°)</th>
<th>Dipole moment (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM2</td>
<td>0.5</td>
<td>0.01</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>MM3</td>
<td>0.6</td>
<td>0.01</td>
<td>1.0</td>
<td>0.07</td>
</tr>
<tr>
<td>AM1</td>
<td>8</td>
<td>0.05</td>
<td>3.3</td>
<td>0.5</td>
</tr>
<tr>
<td>PM3</td>
<td>8</td>
<td>0.04</td>
<td>3.9</td>
<td>0.6</td>
</tr>
<tr>
<td>HF/6-31G(d)</td>
<td>4</td>
<td>0.03</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>B3LYP/6-31G(d)</td>
<td>-</td>
<td>0.02</td>
<td>1.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Expense Comparisons

- **Basis Set**
 - (M = # of atoms; N = # of basis functions)
 - MM scales as M^2
 - AM1/PM3 scale as N^2 to N^4
 - HF scales as N^2 to N^4
 - DFT scales as N^3
 - MP2 scales as N^5
 - MP4 scales as N^7
 - Full Configuration Interaction scales as $N!$
Units in Computational Chemistry

- **Bohr**: Atomic unit of Length (a_0)
 - Equal to the radius of the first Bohr orbit for a hydrogen atom
 - 5.29×10^{-11} m (0.0529 nm, 52.9 pm, 0.529 Å)

- **Hartree**: Atomic unit of Energy
 - Equal to twice the energy of a ground state hydrogen atom
 - 627.51 kcal/mole
 - 2625.5 kJ/mole
 - 27.211 eV
 - 219474.6 cm$^{-1}$

Lab Exercises

- **Using WebMO**
 - Web-based GUI for computational chemistry
 - Directions for other software at the CCCE site: http://www.computationalscience.org/ccce/
 - Drawing and viewing molecules
 - Running various calculations
 - Determining bond distances and angles
 - Potential energy surface calculations
 - Viewing orbitals