10c Computational Study of System Dynamics (Mathcad)

These five problems are similar to those found in a textbook. Instead of giving keystrokes, only the "flow" of solving the problem is given.

#1 Naturally occurring atomic iron consists of 5.82 % ⁵⁴Fe (A = 53.940 u), 91.66 % ⁵⁶Fe (A = 55.935 u), 2.19 % ⁵⁷Fe (A = 56.935 u), and 0.33 % ⁵⁸Fe (A = 57.993 u). Determine the value of the average atomic mass of Fe (the value that appears in the periodic table).

A) table of *w* values
B) table of *A* values
C) determine the index *i*D) average is found by summing up over *i* the product of *w_iA_i*

#2 Calculate the number of moles of $(C_2H_5)_2$ that will occupy 62.9 L at 175 °C and 0.750 bar assuming van der Waals behavior

$$\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$$

where $a = 19.00 \text{ L}^2$ bar mol⁻², $b = 0.1214 \text{ L} \text{ mol}^{-1}$, and $R = 0.08314 \text{ L} \text{ bar K}^{-1} \text{ mol}^{-1}$.

A) define vol(n) as above equation with nRT moved to the right side

B) use seed guess as n = 1 or value from ideal gas law

C) use root function to solve for n with limits between 0 and 100

#3 A quick graphical method for determining the order of reaction n and rate constant	t
k is to make a series of plots of functions of concentration C against time t according to	
the following table	

n	y axis	x axis	slope (m)	intercept (b)
0	С	t	$-k_0$	C_0
1	ln C	t	$-k_1$	$\ln C_0$
2	C^{-1}	t	k_2	C_0^{-1}
3	C^{-2}	t	$2k_3$	C_0^{-2}

Determine the reaction order and rate constant for the decomposition of nitrogen trioxide

<i>t</i> /(s)	0	184	526	867	1877
<i>C</i> /(M)	2.33	2.08	1.67	1.36	0.72

A) table of C values

B) table of *t* values

C) determine the index i

D) create four separate plot C, $\ln C$, 1/C, $1/C^2$ against t (no calculations necessary!)

E) the linear plot identifies the reaction order

F) calculate k

#4 The Arrhenius equation implies that a plot of $\ln k$ against 1/T is linear with a slope $m = -E_a/R$ where *T* is the absolute temperature, *k* is the rate constant, E_a is the activation energy, and R = 8.314 J K⁻¹ mol⁻¹. Calculate the activation energy for the decomposition of acetaldehyde

<i>T</i> /(°C)	430	460	486	518	538	563	592
k	0.0110	0.0352	0.105	0.343	0.79	2.14	4.95

A) table of *T* values

B) table of *k* values

C) determine the index i

D) define lnk, and display (if desired)

E) define invT_i as 1/(T + 273) and display (if desired)

F) find the slope and the intercept using Mathcad functions

G) define the least squares line for plotting (see Mathcad Chat #8)

H) plot lnk and the least squares line

I) calculate E_{a} from the slope

#5 The half lives for the nuclear decay of ⁴⁷Ca and ⁴⁷Sc are 4.7 d and 3.4 d, respectively.

	k_{1}		k.	
47 Co	1	47 So	z	47 _{-T} :
20 ^{Ca}	→	$_{21}SC$	→	22 ^{I I}

Starting with one mole of ⁴⁷Ca, prepare a plot of the amount of each nuclide as a function of time up to 25 d using the differential rate laws. The integrated rate law for ⁴⁷Sc is given in the *JCE* paper by Andraos. Find the time at which the amount of ⁴⁷Sc is a maximum.

A) this looks like Mathcad Chat #11!

B) find the two rate constants by $k = (\ln 2)/t_{1/2}$

C) because t was used in an earlier exercise, it might be best to reset the value 0 to 100)

D) define Bconc(t) in terms of the equation from Andraos

E) define Brate(t) as the derivative with respect to *t* of Bconc(t)

F) find the time for the maximum of B by find the root of Brate(t)