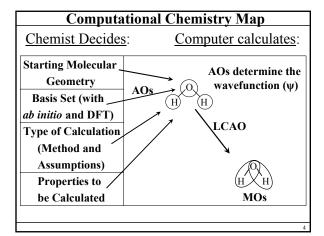

Session 2: Basis Sets

- Two of the major methods (ab initio and DFT) require some understanding of basis sets and basis functions
- This session describes the essentials of basis sets:
 - What they are
 - How they are constructed
 - How they are used
 - Significance in choice


The (r) for each basis function is indicated by the position a colored dot along a horizontal axis. Basis functions may consist of individual Gaussian primitives or a linear combination of Gaussians. In the latter case, the cr) for th underlying Gaussians will be indicated by a row of dots whi appear to come out of the page.


Running a Calculation

- In performing a computational chemistry calculation, the chemist has to make several decisions of input to the code:
 - The molecular geometry (and spin state)
 - The basis set used to determine the wavefunction
 - The properties to be calculated
 - The type(s) of calculations and any accompanying assumptions

Running a calculation

- For ab initio or DFT calculations, many programs require a basis set choice to be made
 - The basis set is an approximate representation of the atomic orbitals (AOs)
 - The program then calculates molecular orbitals (MOs) using the Linear Combination of Atomic Orbitals (LCAO) approximation

Critical Choices

- Choice of the method (and basis set) used is critical
 - Which method?
 - Molecular Mechanics, *Ab initio*, Semiempirical, or DFT
 - Which approximation?
 - MM2, MM3, HF, AM1, PM3, or B3LYP, etc.
 - Which basis set (if applicable)?
 - Minimal basis set
 - Split-valence
 - Polarized, Diffuse, High Angular Momentum,

Why is Basis Set Choice Critical?

- The basis set needs to be able to approximate the actual wave function sufficiently well to give chemically meaningful results
 - Also needs a reasonable computational "cost"
 - Integrals should be evaluated quickly and accurately
- Trade-offs
 - Choice always involves a balance between accuracy and computational cost
 - More accurate methods using larger basis sets will take more computer time

				- 1	-	Æ	1	1 1	
Th	20	rΔ1	110	o I	١,	/ 4	\mathbf{u}	Δ	ıc
	w		LIL	. 41	- 1.1	41	w		ю

- Goal of computational chemistry is to mathematically represent chemical reality
 - Improving the basis set and the degree of electron correlation improves the ability of the computational model to approach reality
- Ultimate goal is an exact solution of the Schrödinger equation

	Comparison	of S	Some	e Me	tho	ds for A	cc	curacy
l	-		D	FT Lo	cation	??		
l		HF	MP2	MP3	MP4	QCISD(T)		Full CI
В	Minimal STO-3G		Electro	n Corre	lation	→		
S	Split Valence 3-21G							
S	Polarized 6-31G(d)							
s	6-311G(d,p)				Ç			
E T	Diffuse 6-311+G(d,p)				16	(,		
1	High ang. Momentum 6-311+G(2d,p)							
	6-311++G(3df,3dp)							
								<u>, </u>
	8	HF Limit						Schrödinger Equation

Possible Basis Functions

- 1. Hydrogen-like Orbitals
 - Derived for a *one-electron* atom
 - Not truly accurate for a many-electron atom
 - Form: $\Psi(r, \theta, \phi) = R(r)Y_l^m(\theta, \phi)$ R(r) = radial function

 Y_l^m = spherical harmonic

- + Advantages: Mutually orthogonal
- Disadvantages: Complex form is awkward for calculations; Most atoms of interest > one electron

Possible Basis Functions

- True wavefunction should be antisymmetric to electron interchange use spin orbitals
 - Antisymmetric linear combination of products of spin orbitals used in an SCF calculation
 - \rightarrow HF-SCF calculation
 - Numerical methods were originally used to solve and find the Hartree-Fock orbitals
- Roothaan: Represent the HF orbitals as linear combinations of a set of known (basis) functions
 - Commonly used set of basis functions for atomic HF calculations is the set of Slater-type orbitals (STOs)

10

Possible Basis Functions

- 2. Slater Type Orbitals (STOs)
 - Normalized form:

$$\mu(r, \boldsymbol{\theta}, \boldsymbol{\phi}) = \frac{(2\boldsymbol{\zeta}/a_0)^{n+0.5}}{[(2n)!]^{0.5}} r^{(n-1)} e^{(-\boldsymbol{\zeta}r/a_0)} Y_l^m(\boldsymbol{\theta}, \boldsymbol{\phi})$$

where n, m, and l are integers and ζ (orbital exponent) is a variational parameter

- Improve results by using a linear combination of several STOs to represent each HF orbital
- HF-SCF atomic calculations require lots of computation
 - Hartree did this numerically in the 1930's

...

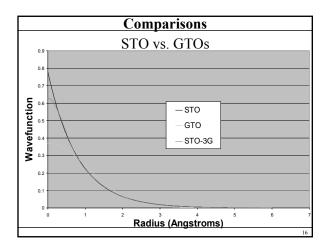
Slater Type Orbitals

- + Advantages: Have a complete set
 - Radial behavior closely matches hydrogenic orbitals
- Disadvantages:
 - No nodes, as with H-like orbitals
 - · Not mutually orthogonal
 - For larger molecules, computer evaluation of the many integrals involved is <u>quite</u> time consuming
 - → Need to reduce the computational cost


Possible Basis Functions

- 3. Gaussian Type Orbitals (GTOs)
 - Proposed by S.F. Boys in 1950
 - GTO form:

$$g(r, \boldsymbol{\theta}, \boldsymbol{\phi}) = \left[\frac{2^{(2n+1.5)}}{(2n-1)!\sqrt{\pi}}\right]^{0.5} \boldsymbol{\zeta}^{(2n+1)/4} r^{(n-1)} e^{(-\boldsymbol{\alpha}r^2)} Y_l^m(\boldsymbol{\theta}, \boldsymbol{\phi})$$


- + Advantages: Have a complete set
 - $\bullet \quad \text{Computer evaluation of integrals } \underline{\text{much faster}}$
 - → Closed integrals; Integrated GTO gives a GTO
- Disadvantages: Not mutually orthogonal
 - Representation of e- probability is poor near and far away from the nucleus

...

GTOs

- Linear combinations of GTO's are used to approximate STOs (which are themselves approximations)
 - A single GTO basis function has significant errors when compared to a STO, especially near the nucleus
 - If several GTOs are combined in a linear combination, the basis function is greatly improved
 - → See next slide

Use of GTOs

- Individual GTOs not used as basis functions:
 - Use a normalized linear combination of a few GTOs (called *primitives*), each with different α values to give a "contracted" Gaussian function

$$g_c = \sum c_i g_p$$

where g_c is a contracted gaussian, g_p is a primitive gaussian, and c_i is a contraction coefficient

• A linear combination of these primitives (typically 1-7) is used to approximate the STO

17

Use of GTOs

- Using contracted GTOs instead of primitive GTOs as the basis set has advantages:
 - Number of variational coefficients to be determined is reduced, which saves a lot of computational time
 - Accuracy is NOT reduced significantly, as long as the contraction coefficients (c_i's) are well chosen
- Increasing the number of primitive GTOs used in each contracted Gaussian improves the accuracy
- Different types of basis sets use different numbers and types of GTOs

- Jargon Used \rightarrow STO-NG (Single ζ)
 - N is the number of primitive GTOs used
 - -Example: STO-3G
 - Used as default basis set in semiempirical MO calculations (AM1, PM3, etc.)
 - Three primitive GTOs used per AO
 - Popular starting point for calculations
 - STO-3G basis functions have been developed for most of the elements in the Periodic table
 - →Minimal basis sets do not adequately describe non-spherical (anisotropic) electron distribution in molecules

19

Minimal Basis Sets

• GTO representation of a STO for *Is* AO:

$$\Phi_{STO-3G}^{1s}(r) = \boldsymbol{\pi}^{-0.5} \boldsymbol{\zeta}^{1.5} e^{(-\boldsymbol{\zeta}^r)} \quad \text{where } \boldsymbol{\zeta} = 1$$

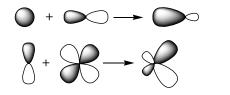
$$\Phi_{STO-3G}^{1s}(r) = c_1 \left(\frac{2\boldsymbol{\alpha}_1}{\boldsymbol{\pi}}\right)^{\frac{3}{4}} e^{(-\boldsymbol{\alpha}_1 r^2)} + c_2 \left(\frac{2\boldsymbol{\alpha}_2}{\boldsymbol{\pi}}\right)^{\frac{3}{4}} e^{(-\boldsymbol{\alpha}_2 r^2)} + c_3 \left(\frac{2\boldsymbol{\alpha}_3}{\boldsymbol{\pi}}\right)^{\frac{3}{4}} e^{(-\boldsymbol{\alpha}_3 r^2)}$$

$$\text{where } c_1 = 0.444615, c_2 = 0.535336, c_3 = 0.154340$$

$$\text{and } \boldsymbol{\alpha}_1 = 0.109818, \boldsymbol{\alpha}_2 = 0.405771, \boldsymbol{\alpha}_3 = 0.2.22766$$

- -"c" values are called the *contraction coefficients*
- The exponents are the alpha (α) values

20


Split Valence Basis Sets

- Jargon Used \rightarrow K-LMG (Double ζ)
 - Differentiate between core and valence electrons
 - Developed to overcome problems of inadequate description of anisotropic electron distributions using minimal basis sets
 - K = number of sp-type inner shell primitive GTOs
 - L = number of inner valence s- and p-type primitive GTOs
 - M = number of outer valence s- and p-type primitive GTOs

Split Valence Basis Sets	
- Each split valence atomic orbital is composed of a	
variable proportion of two (or more) functions of different size or radial extent	
For a larger e cloud $a + b = $	
(longer bond) a < b	
For a smaller e cloud	
$\begin{array}{ccc} \text{(shorter bond)} & \text{a} \times & + & \text{b} \times & = \times \\ \text{(shorter bond)} & (shorte$	
a > b	
\rightarrow a and b are normalized and sum to 1	
22	
Split Valence Basis Sets	
• Examples:	
3-21G	
Three primitives for the inner shell (STO-3G); each	-
valence orbital is constructed with two sizes of	
basis function (<i>Two</i> GTOs for contracted valence	
orbitals; <i>One</i> GTO for extended valence orbitals)	
6-311G	
STO- 6 G for inner shell; Three sizes of basis function for each valence orbital (<i>Three</i> GTOs for	
contracted valence orbitals, and two different sizes	
of GTO for extended valence orbitals)	
23	<u> </u>
Polarized Basis Sets]
Jargon Used \rightarrow 6-31G(d) or 6-31G*	
• Also have 6-31G(d,p) or 6-31G**	
\rightarrow (d) or * type	
• d-type functions added to atoms with Z > 2	
• f-type functions added to transition metals	
\rightarrow (d,p) or ** type	
• p-type functions added to H atoms	
• d-type functions added to atoms with $Z > 2$	
• f-type functions added to transition metals	
6-31G(d) is another popular basis set choice	

Polarized Basis Sets

- In molecule formation, AOs become distorted in shape (polarization)
 - Orbitals are influenced by other nuclei
 - Polarization accounts for these influences which distort the orbital shape

25

Diffuse Basis Sets

- Jargon Used \rightarrow 6-31+G(d) or 6-31++G(d) 6-31+G(d)
 - -6-31G(d) basis set with an additional larger p-function for atoms with Z > 2

6-31++G(d)

- -6-31+G(d) basis set with an additional larger sfunction for H atoms
- Diffuse basis sets are useful for describing anions, molecules with lone pairs, excited states, and transition states (loosely held e⁻)

26

Basis Set Progression

• Increasing number of GTOs Used:

Minimal < Split Valence < Double Zeta < Polarized < Diffuse

Get an increasingly good approximation to the actual wave function

- The number of integrals increases as N^4 where N is the number of basis functions
- During the minimization process, the orbital exponents are adjusted to define a new basis set to start another iteration
- →Computational cost has to be considered

Jumparisum	<u>oi 8</u>	ome	<u>Me</u>	thod	ls for A	cc	uracy
-		D	FT Loc	ation?	?		
	HF	MP2	MP3	MP4	QCISD(T)		Full CI
Minimal STO-3G	Į	Electro	n Correl	ation –	→		
Split Valence 3-21G							
Polarized 6-31G(d)							
6-311G(d,p)				c			
Diffuse 6-311+G(d,p)				Q			
High ang. Momentum 6-311+G(2d,p)							
6-311++G(3df,3dp)							
						\setminus	
œ	HF Limit					'	Schrödinger Equation
	STO-3G Split Valence 3-21G Polarized 6-31G(d) 6-311G(d,p) Diffuse 6-311+G(d,p) High ang, Momentum 6-311+G(2d,p) 6-311++G(3df,3dp)	Minimal STO-3G Split Valence 3-21G Polarized 6-31G(d) 6-311G(d,p) Diffuse 6-311+G(d,p) High ang. Momentum 6-311+G(2d,p) 6-311++G(3df,3dp)	HF MP2 Minimal STO-3G SPIOR Valence 3-21G Polarized 6-31G(d) 6-311G(d,p) High ang. Momentum 6-311+G(2d,p) 6-311+G(3df,3dp)	## MP2 MP3 Minimal STO-3G Electron Correl	HF MP2 MP3 MP4	Minimal STO-3G Electron Correlation → Split Valence 3-21G Polarized 6-31G(d) 6-311G(d,p) Diffuse 6-311+G(d,p) High ang. Momentum 6-311+G(2d,p) 6-311+G(3df,3dp)	HF MP2 MP3 MP4 QCISD(T) STO-3G Split Valence 3-21G Polarized 6-31G(d) 6-311G(d,p) Diffuse 6-311+G(d,p) High ang. Momentum 6-311+G(2d,p) 6-311+G(3df,3dp)

Basis Set Choice and Expense

axial-methylcyclohexane on SGI Indigo2 (Spartan cpu time in sec.)

Method/Basis Set	<u>s.p.</u>	opt.
AM1/STO-3G	~1	10
HF/STO-3G	72	983
HF/ 3-21G(d)	193	2214
HF/6-31G(d,p)	2632	34655 (9.6 h)

• As larger basis sets are used, the energy decreases (Variational Principle)

	Common Basis Sets
Bri	ef Description of Standard Basis Sets
Basis Set	Description
STO-3G	Minimal basis; qualitative results - large systems
3-21G	Double ζ; more accurate results on large systems
6-31G(d)	Moderate set; Common use for medium systems
6-31G(d,p)	Used where H is site of interest; More accurate
6-31+G(d)	Used with anions, excited states, lone pairs, etc.
6-31+G(d,p)	Used with anions, etc., where H is site of interest
6-311++G(d,p)	Good for final, accurate energies, but expensive
Many other	sets are in use. Existing sets can be modified

Γ	Optimization of a Basis Set
•	 Variational Principle: Energy values are bounded from below
l	- The lower the calculated energy, the better
l	– Procedure:
	• Vary the constants and exponents that describe the Gaussian functions <i>sequentially</i> until the lowest energy is obtained
	→ Such a basis set may only apply to that individual molecule, however
	Lab: Gaussian Orbitals
H	
ľ	• Question: How are Gaussian orbitals used to approximate a Slater Type Orbital?
•	• Importance: Basis sets are approximations based on mathematical use of two or more gaussian functions
١.	• Goal: Visualize an "STO-3G" basis set -
l	what does the resultant function look like?
1	• Computational Tool: Spreadsheet

Refer to Basis Set Case Study handout for detailed instructions