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Session 2: Basis Sets

* Two of the major methods
(ab initio and DFT) require T .
some understanding of basis .., L -

Basis: 5TO-3G

sets and basis functions

* This session describes the RN
essentials of basis sets:

— What they are
—How they are constructed
— How they are used

mpear o toms sul af Ihe page

— Significance in choice
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Running a Calculation
¢ In performing ab initio and DFT computa-
tional chemistry calculations, the chemist has
to make several decisions of input to the code:

— The molecular geometry (and spin state)
— The basis set used to determine the wavefunction
— The properties to be calculated

— The type(s) of calculations and any accompanying
assumptions
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Running a calculation

* For ab initio or DFT
calculations, many
programs require a basis set
choice to be made
— The basis set is an approx-

imate representation of the
atomic orbitals (AOs)

— The program then calculates
molecular orbitals (MOs)
using the Linear Combin-
ation of Atomic Orbitals
(LCAO) approximation

CCCE 200 4

Computational Chemistry Map

Chemist Decides: Computer calculates:
Starting Molecular — AOs determine the
Geometry AO @ wavefunction (y)
Basis Set (with / @
ab initio and DFT)
Type of Calculation / LCAO
(Method and
Assumptions) é%
Properties to
be Calculated MOs
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Critical Choices

* Choice of the method (and basis set) used is
critical
* Which method?

* Molecular Mechanics, Ab initio, Semiempirical, or
DFT

* Which approximation?
* MM2, MM3, HF, AM1, PM3, or B3LYP, etc.
* Which basis set (if applicable)?
* Minimal basis set
* Split-valence
* Polarized, Diffuse, High Angular Momentum, ......
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Why is Basis Set Choice Critical?

* The basis set needs to be able to approximate
the actual wave function sufficiently well to
give chemically meaningful results

— Also needs a reasonable computational “cost”
* Integrals should be evaluated quickly and
accurately

* Trade-offs

— Choice always involves a balance between
accuracy and computational cost

—More accurate methods using larger basis sets will
take more computer time
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Theoretical Models

* Goal of computational chemistry is to
mathematically represent chemical reality

— Improving the basis set and the degree of electron
correlation improves the ability of the
computational model to approach reality

+ Ultimate goal is an exact solution of the
Schrodinger equation
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Comparison of Some Methods for Accuracy
DFT Location??
HF | MP2 ‘ MP3 ‘MP4‘QCISD(T) .| FullCI
| Minimal g —
B STO-3G Electron Correlation —
A Split Valence
S 321G
IS Polarized
6-31G(d)
s|  6311G(dp) o
E Diffuse \&
Tl 6311+G(d,p) <,
! High ang.
= Momentum
6-311+G(2d,p)
6-311++G(3df,3dp)
© HF Schrddinger
Limit Equation
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Possible Basis Functions

1. Hydrogen-like Orbitals
Derived for a one-electron atom
* Not truly accurate for a many-electron atom
Form: ¥(r.0.4)=R(Y"(6.9)
R(r) = radial function
¥ = spherical harmonic
+ Advantages: Mutually orthogonal

— Disadvantages: Complex form is awkward for
calculations; Most atoms of interest > one
electron
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Possible Basis Functions
* True wavefunction should be antisymmetric to
electron interchange — use spin orbitals
— Antisymmetric linear combination of products of
spin orbitals used in an SCF calculation
— HF-SCF calculation
— Numerical methods were originally used to solve and
find the Hartree-Fock orbitals
* Roothaan: Represent the HF orbitals as linear
combinations of a set of known (basis) functions

— Commonly used set of basis functions for atomic HF
calculations is the set of Slater-type orbitals (STOs)
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Possible Basis Functions
2. Slater Type Orbitals (STOs)

— Normalized form:

~ (2§/a0)n+0.5
80 = G

where n, m, and 1 are integers and & (orbital

r(n—l)e(—g'r/ao)Ylm(a, ¢)

exponent) is a variational parameter

— Improve results by using a linear combination of
several STOs to represent each HF orbital

— HF-SCF atomic calculations require lots of
computation

» Hartree did this numerically in the 1930’s
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Slater Type Orbitals

+ Advantages: Have a complete set

* Radial behavior closely matches hydrogenic
orbitals

— Disadvantages:
» No nodes, as with H-like orbitals
* Not mutually orthogonal

* For larger molecules, computer evaluation of the
many integrals involved is quite time consuming

— Need to reduce the computational cost
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Possible Basis Functions

3. Gaussian Type Orbitals (GTOs)
Proposed by S.F. Boys in 1950

GTO form:
(2n¢15)

0.5
g(r,¢9,¢):[(2n_1)'\/;} g(2n+1)/4r(n—l)e(—ar2)Ylm(a’¢)

+ Advantages: Have a complete set
» Computer evaluation of integrals much faster
— Closed integrals; Integrated GTO gives a GTO
— Disadvantages: Not mutually orthogonal

* Representation of e- probability is poor near and
far away from the nucleus
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Comparison

STOvs. GTO
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GTOs

* Linear combinations of GTO’s are used to
approximate STOs (which are themselves
approximations)

— A single GTO basis function has significant errors
when compared to a STO, especially near the
nucleus (See previous slide)

—If several GTOs are combined in a linear
combination, the basis function is greatly
improved

— See next slide
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Comparisons

STO vs. GTOs
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Use of GTOs

¢ Individual GTOs not used as basis functions:

—Use a normalized linear combination of a few
GTOs (called primitives), each with different o
values to give a “contracted” Gaussian function

8= z Cigp
where g, is a contracted gaussian,
g, is a primitive gaussian, and c; is
a contraction coefficient

* A linear combination of these primitives (typically
1-7) is used to approximate the STO
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Use of GTOs

— Using contracted GTOs instead of primitive
GTOs as the basis set has advantages:

* Number of variational coefficients to be
determined is reduced, which saves a lot of
computational time

* Accuracy is NOT reduced significantly, as long as
the contraction coefficients (c;’s) are well chosen

— Increasing the number of primitive GTOs used in
each contracted Gaussian improves the accuracy

— Different types of basis sets use different numbers
and types of GTOs
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Minimal Basis Sets

« Jargon Used — STO-NG (Single {)
—N is the number of primitive GTOs used
—Example: STO-3G
* Three primitive GTOs used per AO
* Popular starting point for calculations
* STO-3G basis functions have been developed for
most of the elements in the Periodic table
—Minimal basis sets do not adequately describe
non-spherical (anisotropic) electron distribution in
molecules (as in polar covalent bonds)

LCCE 200 20

Minimal Basis Sets

* GTO representation of a STO for /s AO:
DY) =776 where £ =1
hoo, hoo 2
0 ()= Cl(%) Lar) 52(2&) far) H}(ﬁ) JLar
V4 V2 T

where ¢, = 0444615,¢, = 0535336,¢; = 0154340
and @, = 0109818, z, = 0405771, &z, = 0222766

—“c” values are called the contraction coefficients

— The exponents are the alpha (a) values
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Split Valence Basis Sets

* Jargon Used — K-LMG (Double {)
— Differentiate between core and valence electrons

* Developed to overcome problems of inadequate
description of anisotropic electron distributions
using minimal basis sets (Size is adjusted)

K = number of sp-type inner shell primitive GTOs

L = number of inner valence s- and p-type primitive
GTOs

M = number of outer valence s- and p-type
primitive GTOs
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Split Valence Basis Sets

— Each split valence atomic orbital is composed of a
variable proportion of two (or more) functions of
different size or radial extent

For a larger e cloud
a + b =
(longer bond)
a<b
For a smaller e cloud a + b —
(shorter bond)

a>b

— a and b are normalized and sum to 1
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Split Valence Basis Sets

* Examples:

3-21G (Used as the semiempirical basis set)

Three primitives for the inner shell (STO-3G); each
valence orbital is constructed with two sizes of
basis function (7wo GTOs for contracted valence
orbitals; One GTO for extended valence orbitals)

6-311G

STO-6G for inner shell; Three sizes of basis
function for each valence orbital (7Three GTOs for
contracted valence orbitals, and two different sizes
of GTO for extended valence orbitals)
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Polarized Basis Sets

+ Jargon Used — 6-31G(d) or 6-31G* (older)
* Also have 6-31G(d,p) or 6-31G**
— (d) or * type

* d-type functions added to atoms with Z > 2

« f-type functions added to transition metals
— (d,p) or ** type

* p-type functions added to H atoms

« d-type functions added to atoms with Z > 2

« f-type functions added to transition metals
6-31G(d) is another popular basis set choice
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Polarized Basis Sets

 In molecule formation, AOs become distorted

in shape (polarization)
— Orbitals are influenced by other nuclei
— Polarization accounts for these influences which

distort the orbital shape

Q+ OO — W

3B

28,
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Diffuse Basis Sets

e Jargon Used — 6-31+G(d) or 6-31++G(d)

6-31+G(d)

—6-31G(d) basis set with an additional larger p-
function for atoms with Z > 2

6-31++G(d)
—6-31+G(d) basis set with an additional larger s-
function for H atoms
« Diffuse basis sets are useful for describing
anions, molecules with lone pairs, excited
states, and transition states (loosely held e°)

2L
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Basis Set Progression

* Increasing number of GTOs Used:

Minimal < Split Valence < Polarized < Diffuse

Get an increasingly good approximation to the actual
wave function
— The number of integrals increases as N* where N
is the number of basis functions
— During the minimization process, the orbital
exponents are adjusted to define a new basis set to
start another iteration

—Computational cost has to be considered
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Comparison of Some Methods for Accuracy

DFET Location??

HF ‘MPZ MP3 ‘MP4‘QCISD(T) .| FullCl
[ [

Minimal ! -
STO-3G ‘ Electron Correlation — ‘

Split Valence
3-21G

Polarized
6-31G(d) ~ DZVP

v—o>n]

6-311G(d,p) ~ TZVP

- mw

Diffuse
6-311+G(d,p)

High ang. 4
Momentum
6-311+G(2d,p)

6-311++G(3df,3dp)

o HF Schrddinger
Limit Equation
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Basis Set Choice and Expense

axial-methylcyclohexane on SGI Indigo2
(Spartan cpu time in sec.)

Method/Basis Set s.p. opt.
AM1/STO-3G ~1 10
HF/STO-3G 72 983

HF/ 3-21G(d) 193 2214

HF/ 6-31G(d,p) 2632 34655 (9.6 h)

* As larger basis sets are used, the energy decreases
(Variational Principle)
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Common Basis Sets

B

rief Description of Standard Basis Sets

Basis Set Description
STO-3G | Minimal basis; qualitative results - large systems
321G Double {; more accurate results on large systems
6-31G(d) |Moderate set; Common use for medium systems
6-31G(d,p) |Used where H is site of interest; More accurate
6-31+G(d) |Used with anions, excited states, lone pairs, etc.

6-31+G(d,p) | Used with anions, etc., where H is site of interest

6-311++G(d,p

) | Good for final, accurate energies, but expensive

* Many other sets are in use. Existing sets can be modified
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Optimization of a Basis Set

¢ Variatio

nal Principle: Energy values are

bounded from below

— The lower the calculated energy, the better

— Procedure:

* Vary the constants and exponents that describe the
Gaussian functions sequentially until the lowest
energy is obtained

— Such a basis set may only apply to that
individual molecule, however
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Lab: Gaussian Orbitals

* Question: How are Gaussian orbitals used to
approximate a Slater Type Orbital?

* Importance: Basis sets are approximations
based on mathematical use of two or more
Gaussian functions

¢ Goal: Visualize an “STO-3G” basis set -
what does the resultant function look like?

e Computational Tool: Spreadsheet

e Refer to
detailed

Basis Set Case Study handout for
instructions
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